

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	ATpy 0.9.7 documentation

ATpy - Astronomical Tables in Python

Please note!

Much of ATpy’s functionality has now been incorporated into
Astropy [http://www.astropy.org], and while we will continue
to fix bugs, we are no longer actively developing new features in
ATpy , instead focusing our efforts on Astropy. If you are a new
user, and do not need the SQL-querying functionality, we
recommend using Astropy Tables [http://docs.astropy.org/en/stable/table] directly. If you are
already using ATpy and are interested in migrating to Astropy,
please read our Guide for Migrating to Astropy.

GitHub [https://github.com/atpy/atpy] - Download latest stable version [https://pypi.python.org/pypi/ATpy/] - Report Bugs [https://github.com/atpy/atpy/issues]

ATpy is a high-level Python package providing a way to manipulate tables of
astronomical data in a uniform way. The two main features of ATpy are:

	It provides a Table class that contains data stored in a NumPy structured
array, along with meta-data to describe the columns, and methods to
manipulate the table (e.g. adding/removing/renaming columns, selecting rows,
changing values, sorting, ...).

	It provides built-in support for reading and writing to several common
file/database formats, including FITS, VO, HDF5, and ASCII tables, as
well as SQLite, MySQL and PostgreSQL databases, with a very simple API.

In addition, ATpy provides a TableSet class that can be used to contain
multiple tables, and supports reading and writing to file/database formats
that support this (FITS, VO, and SQL databases).

Finally, ATpy provides support for user-written read/write functions for
file/database formats not supported by default. We encourage users to send
us custom read/write functions to read commonly used formats, and would be
happy to integrate them into the main distribution.

The following example shows how ATpy can be used to read, convert, and
write a data file from FITS format to VO, HDF5, IPAC, and SQLite formats:

import atpy
tbl = atpy.Table('some_fits_table_file.fits')

ATpy will automatically try to detect which type of file you're writing.
tbl.write('new_votable.xml') # VO Table
tbl.write('new_ipactable.tbl') # IPAC table
tbl.write('new_ipactable.hdf5') # HDF5 table
tbl.write('sqlite','new_sqlitetable.db') # SQLite database

You can easily access and modify data in the table:
tbl.some_column[3] = 4.5
tbl.remove_column('some_other_column')

This is only a small fraction of ATpy’s functionality. We strongly
recommend that users read through the documentation, which is available
below. For a quick introduction, we recommend the Constructing a table and
Accessing Table Data sections. For information about format-specific features, see
Supported Formats.

Documentation

	Obtaining and Installing

	Constructing a table

	Accessing Table Data

	Modifying tables

	Table Sets

	Masking and null values

	Custom reading/writing

	Supported Formats

	Full API for Table class

	Full API for TableSet class

Developers

ATpy is developed by Thomas Robitaille [http://www.mpia-hd.mpg.de/~robitaille/] and Eli Bressert [http://astrobiased.com].

 Copyright 2009-2013, Eli Bressert and Thomas Robitaille.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	stable

 	latest

 	0.9.7

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	ATpy 0.9.7 documentation

Obtaining and Installing

Requirements

ATpy requires the following:

	Python [http://www.python.org] 2.6 or later

	Numpy [http://www.numpy.org/] 1.5 or later

	Astropy [http://www.astropy.org] 0.2 or later

The following packages are optional, but are required to read/write to certain
formats:

	h5py [http://www.h5py.org] 1.3.0 or later (for HDF5 tables)

	MySQL-python [http://sourceforge.net/projects/mysql-python] 1.2.2 or later
(for MySQL tables)

	PyGreSQL [http://www.pygresql.org/] 3.8.1 or later (for PostGreSQL tables)

Stable version

The latest stable release of ATpy can be downloaded from PyPI [https://pypi.python.org/pypi/ATpy]. To install ATpy, use the standard installation procedure:

tar xvzf ATpy-X-X.X.tar.gz
cd ATpy-X.X.X/
python setup.py install

Developer version

Advanced users wishing to use the latest development (“unstable”) version can check it out with:

git clone git://github.com/atpy/atpy.git

which can then be installed with:

cd atpy
python setup.py install

 Copyright 2009-2013, Eli Bressert and Thomas Robitaille.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	stable

 	latest

 	0.9.7

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	ATpy 0.9.7 documentation

Constructing a table

The Table class is the basic entity in ATpy. It consists of table data
and metadata. The data is stored using a NumPy [http://numpy.scipy.org/]
structured array. The metadata includes units, null values, and column
descriptions, as well as comments and keywords.

Data can be stored in the table using many of the NumPy types [http://docs.scipy.org/doc/numpy/reference/arrays.scalars.html#built-in-scalar-types],
including booleans, 8, 16, 32, and 64-bit signed and unsigned integers, 32
and 64-bit floats, and strings. Not all file formats and databases support
reading and writing all of these types – for more information, see
Supported Formats.

Creating a table

The simplest way to create an instance of the Table is to call the
class with no arguments:

>>> t = atpy.Table()

Populating the table

A table can be populated either manually or by reading data from a file or database. Reading data into a table erases previous content. Data can be manually added once a table has been read in from a file.

Reading data from a file

The read(...) method can be used to read in a table from a file. To date, ATpy supports the following file formats:

	FITS [http://archive.stsci.edu/fits/fits_standard/] tables (type=fits)

	VO [http://www.ivoa.net/Documents/VOTable/] tables (type=vo)

	IPAC [http://irsa.ipac.caltech.edu/applications/DDGEN/Doc/ipac_tbl.html] tables (type=ipac)

	HDF5 [http://www.hdfgroup.org/HDF5/] (type=hdf5)

Now that ATpy has integrates with asciitable [http://cxc.harvard.edu/contrib/asciitable/], the following formats are also supported:

	CDS [http://vizier.u-strasbg.fr/doc/catstd.htx] (type=cds or type=mrt)

	DAOPhot (type=daophot)

	RDB (type=rdb)

	Arbitrary ASCII tables (type=ascii)

When reading a table from a file, the only required argument is the filename. For example, to read a VO table called example.xml, the following should be used:

>>> t.read('example.xml')
Auto-detected input type: VO table

The read() method will in most cases correctly identify the format of the file from the extension. As seen above, the default behavior is to specifically tell the user what format is being assumed, but this can be controlled via the verbose argument.

In some cases, read() will fail to determine the input type. In this case, or to override the automatically selected type, the input type can be specified using the type argument:

>>> t.read('example.xml', type='vo')

The read method supports additional file-format-dependent options. These are described in more detail in Supported Formats.

In cases where multiple tables are available in a table file, ATpy will display a message to the screen with instructions of how to specify which table to read in. Alternatively, see Table Sets for information on how to read all tables into a single TableSet instance.

As a convenience, it is possible to create a Table instance and read in data in a single command:

>>> t = Table('example.xml')

Any arguments given to Table are passed on to the read method, so the above is equivalent to:

>>> t = Table()
>>> t.read('example.xml')

As of 0.9.6, it is now possible to specify URLs starting with http://
or ftp:// and the file will automatically be downloaded. Furthermore,
it is possible to specify files compressed in gzip or bzip format for all
I/O formats.

Reading data from a database

Reading a table from a database is very similar to reading a table from a file. The main difference is that for databases, the first argument should be the database type, To date, ATpy supports the following database types:

	SQLite (sqlite)

	MySQL (mysql)

	PostGreSQL (postgres)

The remaining arguments depend on the database type. For example, an SQLite database can be read by specifying the database filename:

>>> t.read('sqlite','example.db')

For MySQL and PostGreSQL databases, it is possible to specify the database, table, authentication, and host parameters. The various options are descried in more detail in Supported Formats. As for files, the verbose and type arguments can be used.

As for reading in from files, one can read in data from a database while initializing the Table object:

>>> t = Table('sqlite','example.db')

Note

It is possible to specify a full SQL query using the query argument.
Any valid SQL is allowed. If this is used, the table name should
nevertheless be specified using the table argument.

Adding columns to a table

It is possible to add columns to an empty or an existing table. Two methods exist for this. The first, add_column, allows users to add an existing array to a column. For example, the following can be used to add a column named time where the variable time_array is a NumPy array:

>>> t.add_column('time', time_array)

The add_column method also optionally takes metadata about the column, such as units, or a description. For example:

>>> t.add_column('time', time_array, unit='seconds')

indicates that the units of the column are seconds. It is also possible to convert the datatype of an array while adding it to a table by using the dtype argument. For example, the following stores the column from the above examples as 32-bit floating point values:

>>> t.add_column('time', time_array, unit='seconds', dtype=np.float32)

In some cases, it is desirable to add an empty column to a table, and populate it element by element. This can be done using the add_empty_column method. The only required arguments for this method are the name and the data type of the column:

>>> t.add_empty_column('id', np.int16)

If the column is the first one being added to an empty table, the shape argument should be used to specify the number of rows. This should either be an integer giving the number of rows, or a tuple in the case of vector columns (see Vector Columns for more details)

Vector Columns

As well as using one-dimensional columns is also possible to specify so-called vector columns, which are essentially two-dimensional arrays. Only FITS and VO tables support reading and writing these. The add_column method accepts two-dimensional arrays as input, and uses these to define vector columns. Empty vector columns can be created by using the add_empty_column method along with the shape argument to specify the full shape of the column. This should be a tuple of the form (n_rows, n_elements).

Writing the data to a file

Writing data to files or databases is done through the write method. The arguments to this method are very similar to that of the read data. The only main difference is that the write method can take an overwrite argument that specifies whether or not to overwrite existing files.

Adding meta-data

Comments and keywords can be added to a table using the add_comment() and add_keyword() methods:

>>> t.add_comment("This is a great table")
>>> t.add_keyword("meaning", 42)

 Copyright 2009-2013, Eli Bressert and Thomas Robitaille.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	stable

 	latest

 	0.9.7

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	ATpy 0.9.7 documentation

Accessing Table Data

Accessing the data

The table data is stored in a NumPy structured array, which can be accessed by passing the column name a key. This returns the column in question as a NumPy array:

t['column_name']

For convenience, columns with names that satisfy the python variable name requirements (essentially starting with a letter and containing no symbols apart from underscores) can be accessed directly as attributes of the table:

t.column_name

Since the returned data is a NumPy array, individual elements can be accessed using:

t['column_name'][row_number]

or:

t.column_name[row_number]

Both notations can be used to set data in the table, for example:

t.column_name[row_number] = 1

and:

t['column_name'][row_number] = 1

are equivalent, and will set the element at row_number to 1

Accessing the metadata

The column metadata is stored in the columns attribute. To see an overview of the metadata, simply use:

>>> t.columns

The metadata for a specific column can then be accessed by specifying the column name as a key:

>>> t.columns['some_column']

or using the column number:

>>> t.columns[column_number]

The attributes of a column object are dtype, unit, description, null, and format.

Note

While the unit, description and format for a column can be modified using
the columns attribute, the dtype and null values should not be modified in
this way as the changes will not propagate to the data array.

It is also possible to view a description of the table by using the describe method of the Table instance:

>>> t.describe()

In addition to the column metadata, the comments and keywords are available via the keywords and comments attributes of the Table instance, for example:

>>> instrument = t.keywords['instrument']

The keywords attribute is a dictionary, and the comments attribute is a list.

Accessing table rows

The row(...) method can be used to access a specific row in a table:

>>> row = t.row(row_number)

This returns the row as a NumPy record. The row can instead be returned as a tuple of elements with Python types, by using the python_types argument:

>>> row = t.row(row_number, python_types=True)

Two more powerful methods are available: rows and where. The rows method can be used to retrieve specific rows from a table as a new Table instance:

>>> t_new = t.rows([1,3,5,2,7,8])

Alternatively, the where method can be given a boolean array to determine which rows should be selected. This is in fact very powerful as the boolean array can actually be written as selection conditions:

>>> t_new = t.where((t.id > 10) & (t.ra < 45.4) & (t.flag == 'ok'))

Global Table properties

One can access the number of rows in a table by using the python len function:

>>> len(t)

In addition, the number of rows and columns can also be accessed with the shape attribute:

>>> t.shape

where the first number is the number of rows, and the second is the number of columns (note that a vector column counts as a single column).

 Copyright 2009-2013, Eli Bressert and Thomas Robitaille.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	stable

 	latest

 	0.9.7

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	ATpy 0.9.7 documentation

Modifying tables

Manipulating table columns

Columns can be renamed or removed. To do this, one can use the
remove_column, remove_columns, keep_columns and rename_column
methods. For example, to rename a column time to space, one can use:

>>> t.rename_column('time','space')

The keep_columns essentially acts in the opposite way to
remove_columns - it is used to specify which subset of the columns to not
remove, which can be useful for extracting specific columns from a large
table. For more information, see the Full API for Table class.

Sorting tables

To sort a table, use the sort() method, along with the name of the column to sort by:

>>> t.sort('time')

Combining tables

Given two Table instances with the same column metadata, and the same number of columns, one table can be added to the other via the append method:

>>> t1 = Table(...)
>>> t2 = Table(...)
>>> t1.append(t2)

 Copyright 2009-2013, Eli Bressert and Thomas Robitaille.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	stable

 	latest

 	0.9.7

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	ATpy 0.9.7 documentation

Table Sets

A TableSet instance contains a Python list of individual instances of the Table class. The advantage of using a TableSet instead of building a Python list of Table instances manually is that ATpy allows reading and writing of groups of tables to file formats that support it (e.g. FITS and VO table files or SQL databases).

Initialization

The easiest way to create a table set object is to call the TableSet class with no arguments:

tset = TableSet()

Manually adding a table to a set

An instance of the Table class can be added to a set by using the append() method:

tset.append(t)

where t is an instance of the Table() class.

Reading in tables from a file or database

The read() method can be used to read in multiple tables from a file or database. This method automatically determines the file or database type and reads in the tables. For example, all the tables in a VO table can be read in using:

tset.read('somedata.xml')

while all the tables in a FITS file can be read in using:

tset.read('somedata.fits')

As for the Table() class, in some cases, read() will fail to determine the input type. In this case, or to override the automatically selected type, the input type can be specified using the type argument:

tset.read('somedata.fits.gz', type='fits')

Any arguments passed to TableSet() when creating a table instance are passed to the read() method. This can be used to create a TableSet() instance and fill it with data in a single line. For example, the following:

tset = TableSet('somedata.xml')

is equivalent to:

tset = TableSet()
tset.read('somedata.xml')

Accessing a single table

Single tables can be accessed through the TableSet.tables python list. For example, the first table in a set can be accessed with:

tset.tables[0]

And all methods associated with single tables are then available. For example, the following shows how to run the describe method of the first table in a set:

tset.tables[0].describe()

Adding meta-data

As well as having keywords and comments associated with each Table, it is possible to have overall keywords and comments associated with a TableSet.
Comments and keywords can be added to a table using the add_comment() and add_keyword() methods:

>>> tset.add_comment("This is a great table set")
>>> tset.add_keyword("version", 314)

 Copyright 2009-2013, Eli Bressert and Thomas Robitaille.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	stable

 	latest

 	0.9.7

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	ATpy 0.9.7 documentation

Masking and null values

It is often useful to be able to define missing or invalid values in a table. There are currently two ways to do this in ATpy, Null values, and Masking. The preferred way is to use Masking, but this requires at least NumPy 1.4.1 in most cases, and the latest svn version of NumPy for SQL database input/output. Therefore, for version 0.9.4 of ATpy, the default is to use the Null value method. To opt-in to using masked arrays, specify the masked=True argument when creating a Table instance:

>>> t = Table('example.fits.gz', masked=True)

In future, once NumPy 1.5.0 is out, we will switch over to using masked arrays by default, and will slowly phase out the Null value method.

If you want to set the default for masking to be on or off for a whole script, this can be done using the set_masked_default function:

import atpy
atpy.set_masked_default(True)

If you want to set the default for masking on a user-level, create a file named ~/.atpyrc in your home directory, containing:

[general]
masked_default:yes

The set_masked_default function overrides the .atpyrc file, and the masked= argument in Table overrides both the set_masked_default function and the .atpyrc file.

Null values

The basic idea behind this method is to specify a special value in each column that will signify missing or invalid data. To specify the Null value for a column, use the null argument in add_column:

>>> t.add_column('time', time, null=-999.)

Following this, if the table is written out to a file or database, this null value will be stored.

This method is generally unreliable, especially for floating point values, and does not allow users to easily distinguish between invalid and missing values.

Masking

NumPy supports masked arrays, where specific elements of an array can be properly masked by using a mask - a boolean array. There are several advantages to using this:

	The mask is unrelated to the value in the cell - any cell can be masked, not
just all cells with a specific value

	It is possible to distinguish between invalid (e.g. NaN) and missing values

	Values can easily be unmasked (although when writing to a file/database, the
‘old’ values are lost for masked elements).

	NumPy provides masked versions of many functions, for example sum,
mean, or median, which means that it is easy to correctly compute
statistics on masked arrays, ignoring the masked values.

To specify the mask of a column, use the mask argument in add_column. To do the equivalent to the example in Null values, use:

>>> t.add_column('time', time, mask=time==-999.)

When writing out to certain file/database formats, a masked value has to be given a specific value - this is called a fill value. To set the fill value, simply use the fill argument when adding data to a column:

>>> t.add_column('time', time, mask=time==-999., fill=-999.)

In the above example, if the table is written out to an IPAC table, the value of -999. will be used for masked values.

Note

When implementing this in ATpy, we discovered a few bugs in the masked
structured implementation of NumPy, which have now been fixed. Therefore,
we recommend using the latest svn version of NumPy if you want to use
masked arrays.

 Copyright 2009-2013, Eli Bressert and Thomas Robitaille.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	stable

 	latest

 	0.9.7

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	ATpy 0.9.7 documentation

Custom reading/writing

One of the new features introduced in ATpy 0.9.2 is the ability for users to write their own read/write functions and register them with ATpy. A read or write function needs to satisfy the following requirements:

	The first argument should be a Table instance (in the case of a single
table reader/writer) or a TableSet instance (in the case of a table set
reader/writer)

	The function can take any other arguments, with the exception of the keyword
arguments verbose and type.

	The function should not return anything, but rather should operate directly
on the table or table set instance passed as the first argument

	If the file format supports masking/null values, the function should take
into account that there are two ways to mask values (see
Masking and null values). The Table instance has a _masked attribute
that specifies whether the user wants a Table with masked arrays, or with a
null value. The function should take this into account. For example, in the
built-in FITS reader, the table is populated with add_column in the
following way:

if self._masked:
 self.add_column(name, data, unit=columns.units[i], \
 mask=data==columns.nulls[i])
else:
 self.add_column(name, data, unit=columns.units[i], \
 null=columns.nulls[i])

The reader/writer function can then fill the table by using the Table methods described in Full API for Table class (for a single table reader/writer) or Full API for TableSet class (for a table set reader/writer). In particular, a single table reader will likely contain calls to add_column, while a single table writer will likely contain references to the data attribute of Table.

Once a custom function is available, the user can register it using one of the four ATpy functions:

	atpy.register_reader: Register a reader function for single tables

	atpy.register_set_reader: Register a reader function for table sets

	atpy.register_writer: Register a writer function for single tables

	atpy.register_set_writer: Register a writer function for tables sets

The API for these functions is of the form (ttype, function, override=True/False), where ttype is the code name for the format (like the build-in fits, vo, ipac, or sql types), function is the actual function to use, and override allows the user to override existing definitions (for example to provide an improved ipac reader).

For example, if a function is defined for reading HDF5 tables, which we can call hdf5.read, then one would first need to register this function after importing atpy:

>>> import atpy
>>> atpy.register_reader('hdf5', hdf5.read)

This type can then be used when reading in a table:

>>> t = atpy.Table('mytable.hdf5', type='hdf5')

It is also possible to register extensions for a specific type using atpy.register_extensions. This function expects a table type and a list of file extensions to associate with it. For example, by setting:

>>> atpy.register_extensions('hdf5', ['hdf5', 'hdf'])

One can then read in an HDF5 table without specifying the type:

>>> t = atpy.Table('mytable.hdf5')

We encourage users to send us examples of reader/writer functions for various formats, and would be happy in future to include readers and writers for commonly used formats in ATpy.

 Copyright 2009-2013, Eli Bressert and Thomas Robitaille.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	stable

 	latest

 	0.9.7

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	ATpy 0.9.7 documentation

Supported Formats

The following pages describe the file formats currently supported, and format-specific options. A full API is also included for advanced users.

	FITS tables

	VO tables

	HDF5 tables

	IPAC tables

	ASCII tables

	SQL databases

	Online queries

Unless stated otherwise below, all table types support the following types:

	booleans

	8-, 16-, 32-, and 64- bit signed integer numbers.

	8-, 16-, 32-, and 64- bit unsigned integer numbers.

	32- and 64-bit floating point numbers.

	ASCII strings

 Copyright 2009-2013, Eli Bressert and Thomas Robitaille.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	stable

 	latest

 	0.9.7

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	ATpy 0.9.7 documentation

 	Supported Formats

FITS tables

Note

The Flexible Image Transport System (FITS) format is a widely used file
format in Astronomy, that is used to store, transmit, and manipulate
images and tables. FITS tables contain one or more header-data units
(HDU) which can be either images or tables in ASCII or binary format.
Tables can contain meta-data, stored in the header.

Overview

FITS tables are supported thanks to the pyfits [http://www.stsci.edu/resources/software_hardware/pyfits] module. Reading FITS tables is straightforward:

>>> t = atpy.Table('table.fits')

If more than one table is present in the file, the HDU can be specified:

>>> t = atpy.Table('table.fits', hdu=2)

To read in all HDUs in a file, use the TableSet class:

>>> t = atpy.TableSet('table.fits')

Compressed FITS files can be read easily:

>>> t = atpy.Table('table.fits.gz')

In the event that ATpy does not recognize a FITS table (for example if the file extension is obscure), the type can be explicitly given:

>>> t = atpy.Table('table', type='fits')

Note

As for all file formats, the verbose argument can be specified to
control whether warning messages are shown when reading (the default is
verbose=True), and the overwrite argument can be used when
writing to overwrite a file (the default is overwrite=False).

Full API for advanced users

Note

The following functions should not be called directly - the arguments should be passed to Table()/Table.read(),
Table.write(), TableSet()/TableSet.read(), and
TableSet.write() respectively.

	
atpy.fitstable.read(self, filename, hdu=None, memmap=False, verbose=True)

	Read a table from a FITS file

Required Arguments:

	filename: [string]

	The FITS file to read the table from

Optional Keyword Arguments:

	hdu: [integer]

	The HDU to read from the FITS file (this is only required
if there are more than one table in the FITS file)

	memmap: [bool]

	Whether PyFITS should use memory mapping

	
atpy.fitstable.write(self, filename, overwrite=False)

	Write the table to a FITS file

Required Arguments:

	filename: [string]

	The FITS file to write the table to

Optional Keyword Arguments:

	overwrite: [True | False]

	Whether to overwrite any existing file without warning

	
atpy.fitstable.read_set(self, filename, memmap=False, verbose=True)

	Read all tables from a FITS file

Required Arguments:

	filename: [string]

	The FITS file to read the tables from

Optional Keyword Arguments:

	memmap: [bool]

	Whether PyFITS should use memory mapping

	
atpy.fitstable.write_set(self, filename, overwrite=False)

	Write the tables to a FITS file

Required Arguments:

	filename: [string]

	The FITS file to write the tables to

Optional Keyword Arguments:

	overwrite: [True | False]

	Whether to overwrite any existing file without warning

 Copyright 2009-2013, Eli Bressert and Thomas Robitaille.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	stable

 	latest

 	0.9.7

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	ATpy 0.9.7 documentation

 	Supported Formats

VO tables

Note

Virtual Observatory (VO) tables are a new format developed by the
International Virtual Observatory Alliance to store one or more tables.
It is a format based on the Extensible Markup Language (XML).

VO tables are supported thanks to the vo [https://trac6.assembla.com/astrolib] module. Reading VO tables is straightforward:

>>> t = atpy.Table('table.vot')

If more than one table is present in the file, ATpy will give a list of available tables, identified by an ID (tid). The specific table to read can then be specified with the tid= argument:

>>> t = atpy.Table('table.vot', tid=2)

To read in all tables in a file, use the TableSet class:

>>> t = atpy.TableSet('table.vot')

In some cases, the VO table file may not be strictly standard compliant. When reading in a VO table, it is possible to specify an argument which controls whether to adhere strictly to standards and throw an exception if any errors are found (pedantic=True), or whether to relax the requirements and accept non-standard features (pedantic=False). The latter is the default.

Finally, when writing out a VO table, the default is to use ASCII VO tables (analogous to ASCII FITS tables). It is also possible to write tables out in binary VO format. To do this, use the votype argument:

>>> t.write('table.vot', votype='binary')

The default is votype='ascii'.

In the event that ATpy does not recognize a VO table (for example if the file extension is obscure), the type can be explicitly given:

>>> t = atpy.Table('table', type='vo')

Note

As for all file formats, the verbose argument can be specified to
control whether warning messages are shown when reading (the default is
verbose=True), and the overwrite argument can be used when
writing to overwrite a file (the default is overwrite=False).

Full API for advanced users

Note

The following functions should not be called directly - the arguments should be passed to Table()/Table.read(),
Table.write(), TableSet()/TableSet.read(), and
TableSet.write() respectively.

	
atpy.votable.read(self, filename, pedantic=False, tid=-1, verbose=True)

	Read a table from a VOT file

Required Arguments:

	filename: [string]

	The VOT file to read the table from

Optional Keyword Arguments:

	tid: [integer]

	The ID of the table to read from the VO file (this is
only required if there are more than one table in the VO file)

	pedantic: [True | False]

	When pedantic is True, raise an error when the file violates
the VO Table specification, otherwise issue a warning.

	
atpy.votable.write(self, filename, votype='ascii', overwrite=False)

	Write the table to a VOT file

Required Arguments:

	filename: [string]

	The VOT file to write the table to

Optional Keyword Arguments:

	votype: [‘ascii’ | ‘binary’]

	Whether to write the table as ASCII or binary

	
atpy.votable.read_set(self, filename, pedantic=False, verbose=True)

	Read all tables from a VOT file

Required Arguments:

	filename: [string]

	The VOT file to read the tables from

Optional Keyword Arguments:

	pedantic: [True | False]

	When pedantic is True, raise an error when the file violates
the VO Table specification, otherwise issue a warning.

	
atpy.votable.write_set(self, filename, votype='ascii', overwrite=False)

	Write all tables to a VOT file

Required Arguments:

	filename: [string]

	The VOT file to write the tables to

Optional Keyword Arguments:

	votype: [‘ascii’ | ‘binary’]

	Whether to write the tables as ASCII or binary tables

 Copyright 2009-2013, Eli Bressert and Thomas Robitaille.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	stable

 	latest

 	0.9.7

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	ATpy 0.9.7 documentation

 	Supported Formats

HDF5 tables

Note

The Hierarchical Data Format (HDF) is a format that can be used to
store, transmit, and manipulate datasets (n-dimensional arrays or
tables). Datasets can be collected into groups, which can be
collected into larger groups. Datasets and groups can contain
meta-data, in the form of attributes.

HDF5 tables are supported thanks to the h5py [http://code.google.com/p/h5py/] module. Reading HDF5 tables is straightforward:

>>> t = atpy.Table('table.hdf5')

If more than one table is present in the file, ATpy will give a list of available tables, identified by a path. The specific table to read can then be specified with the table= argument:

>>> t = atpy.Table('table.hdf5', table='Measurements')

In the case where a table is inside a group, or a hierarchy of groups, the table name may be a full path inside the file:

>>> t = atpy.Table('table.hdf5', table='Group1/Measurements')

To read in all tables in an HDF5 file, use the TableSet class:

>>> t = atpy.TableSet('table.hdf5')

When writing out an HDF5 table, the default is to write the uncompressed, but it is possible to turn on compression using the compression argument:

>>> t.write('table.hdf5', compression=True)

To write the table to a specific group within the file, use the group argument:

>>> t.write('table.hdf5', group='Group4')

Finally, it is possible to append tables to existing files, using the append argument. For example, the following two commands write out two tables to the same existing file:

>>> t1.write('existing_table.hdf', append=True)
>>> t2.write('existing_table.hdf', append=True)

In the event that ATpy does not recognize an HDF5 table (for example if the file extension is obscure), the type can be explicitly given:

>>> t = atpy.Table('table', type='hdf5')

Note

As for all file formats, the verbose argument can be specified to
control whether warning messages are shown when reading (the default is
verbose=True), and the overwrite argument can be used when
writing to overwrite a file (the default is overwrite=False).

Full API for advanced users

Note

The following functions should not be called directly - the arguments should be passed to Table()/Table.read(),
Table.write(), TableSet()/TableSet.read(), and
TableSet.write() respectively.

	
atpy.hdf5table.read(self, filename, table=None, verbose=True)

	Read a table from an HDF5 file

Required Arguments:

	filename: [string]

	
The HDF5 file to read the table from

OR

	file or group handle: [h5py.highlevel.File | h5py.highlevel.Group]

	The HDF5 file handle or group handle to read the table from

Optional Keyword Arguments:

	table: [string]

	The name of the table to read from the HDF5 file (this is only
required if there are more than one table in the file)

	
atpy.hdf5table.write(self, filename, compression=False, group='', append=False, overwrite=False, ignore_groups=False)

	Write the table to an HDF5 file

Required Arguments:

	filename: [string]

	
The HDF5 file to write the table to

OR

	file or group handle: [h5py.highlevel.File | h5py.highlevel.Group]

	The HDF5 file handle or group handle to write the table to

Optional Keyword Arguments:

	compression: [True | False]

	Whether to compress the table inside the HDF5 file

	group: [string]

	The group to write the table to inside the HDF5 file

	append: [True | False]

	Whether to append the table to an existing HDF5 file

	overwrite: [True | False]

	Whether to overwrite any existing file without warning

	ignore_groups: [True | False]

	With this option set to True, groups are removed from table names.
With this option set to False, tables are placed in groups that
are present in the table name, and the groups are created if
necessary.

	
atpy.hdf5table.read_set(self, filename, pedantic=False, verbose=True)

	Read all tables from an HDF5 file

Required Arguments:

	filename: [string]

	The HDF5 file to read the tables from

	
atpy.hdf5table.write_set(self, filename, compression=False, group='', append=False, overwrite=False, ignore_groups=False, **kwargs)

	Write the tables to an HDF5 file

Required Arguments:

	filename: [string]

	
The HDF5 file to write the tables to

OR

	file or group handle: [h5py.highlevel.File | h5py.highlevel.Group]

	The HDF5 file handle or group handle to write the tables to

Optional Keyword Arguments:

	compression: [True | False]

	Whether to compress the tables inside the HDF5 file

	group: [string]

	The group to write the table to inside the HDF5 file

	append: [True | False]

	Whether to append the tables to an existing HDF5 file

	overwrite: [True | False]

	Whether to overwrite any existing file without warning

	ignore_groups: [True | False]

	With this option set to True, groups are removed from table names.
With this option set to False, tables are placed in groups that
are present in the table name, and the groups are created if
necessary.

 Copyright 2009-2013, Eli Bressert and Thomas Robitaille.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	stable

 	latest

 	0.9.7

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	ATpy 0.9.7 documentation

 	Supported Formats

IPAC tables

Note

IPAC tables are an ASCII table that can contain a single table. The
format can contain meta-data that consists of keyword values and
comments (analogous to FITS files), and the column headers are
separated by pipe (|) symbols that indicate the position of the
columns.

IPAC tables are natively supported in ATpy (no additional module is required). Reading IPAC tables is straightforward:

>>> t = atpy.Table('table.tbl')

and writing a table out in IPAC format is equally easy:

>>> t.write('table.tbl')

IPAC tables can have three different definitions with regard to the alignment of the columns with the pipe symbols in the header. The definition to use is controlled by the definition argument. The definitions are:

	Any character below a pipe symbol belongs to the column on the left, and any characters below the first pipe symbol belong to the first column.

	Any character below a pipe symbol belongs to the column on the right.

	No characters should be present below the pipe symbols.

The default is definition=3.

Note

As for all file formats, the verbose argument can be specified to
control whether warning messages are shown when reading (the default is
verbose=True), and the overwrite argument can be used when
writing to overwrite a file (the default is overwrite=False).

Full API for advanced users

Note

The following functions should not be called directly - the arguments should be passed to Table()/Table.read() and
Table.write() respectively.

	
atpy.ipactable.read(self, filename, definition=3, verbose=False, smart_typing=False)

	Read a table from a IPAC file

Required Arguments:

	filename: [string]

	The IPAC file to read the table from

Optional Keyword Arguments:

definition: [1 | 2 | 3]

The definition to use to read IPAC tables:

	1: any character below a pipe symbol belongs to the

	column on the left, and any characters below the
first pipe symbol belong to the first column.

	2: any character below a pipe symbol belongs to the

	column on the right.

	3: no characters should be present below the pipe

	symbols (default).

smart_typing: [True | False]

Whether to try and save memory by using the smallest
integer type that can contain a column. For example,
a column containing only values between 0 and 255 can
be stored as an unsigned 8-bit integer column. The
default is false, so that all integer columns are
stored as 64-bit integers.

	
atpy.ipactable.write(self, filename, overwrite=False)

	Write the table to an IPAC file

Required Arguments:

	filename: [string]

	The IPAC file to write the table to

 Copyright 2009-2013, Eli Bressert and Thomas Robitaille.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	stable

 	latest

 	0.9.7

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	ATpy 0.9.7 documentation

 	Supported Formats

ASCII tables

Note

There are probably as many ASCII table formats as astronomers (if not
more). These generally store a single table, and can sometimes include
meta-data.

Overview

Reading ASCII tables is supported thanks to the asciitable [http://cxc.harvard.edu/contrib/asciitable/] module, which makes it easy to read in arbitrary ASCII files.

By default, several pre-defined formats are available. These include CDS [http://vizier.u-strasbg.fr/doc/catstd.htx] tables (also called Machine-Readable tables), DAOPhot tables, and RDB tables. To read these formats, simply use:

>>> t = atpy.Table('table.mrt', type='mrt')
>>> t = atpy.Table('table.cds', type='cds')
>>> t = atpy.Table('table.phot', type='daophot')
>>> t = atpy.Table('table.rdb', type='rdb')

The type= argument is optional for these formats, if they have appropriate file extensions, but due to the large number of ASCII file formats, it is safer to include it.

ATpy also allows full access to asciitable. If the type='ascii' argument is specified in Table(), all arguments are passed to asciitable.read, and the result is automatically stored in the ATpy Table instance. For more information on the arguments available in asciitable.read, see here [http://cxc.harvard.edu/contrib/asciitable/#basic-usage-with-read].

Note

As for all file formats, the verbose argument can be specified to
control whether warning messages are shown when reading (the default is
verbose=True), and the overwrite argument can be used when
writing to overwrite a file (the default is overwrite=False).

Full API for advanced users

Note

The following functions should not be called directly - the arguments should be passed to Table()/Table.read().

	
atpy.asciitables.read_cds(self, filename, **kwargs)

	Read data from a CDS table (also called Machine Readable Tables) file

Required Arguments:

	filename: [string]

	The file to read the table from

Keyword Arguments are passed to astropy.io.ascii

	
atpy.asciitables.read_daophot(self, filename, **kwargs)

	Read data from a DAOphot table

Required Arguments:

	filename: [string]

	The file to read the table from

Keyword Arguments are passed to astropy.io.ascii

	
atpy.asciitables.read_rdb(self, filename, **kwargs)

	Read data from an RDB table

Required Arguments:

	filename: [string]

	The file to read the table from

Keyword Arguments are passed to astropy.io.ascii

	
atpy.asciitables.read_ascii(self, filename, **kwargs)

	Read a table from an ASCII file using astropy.io.ascii

Optional Keyword Arguments:

Reader - Reader class (default= BasicReader)
Inputter - Inputter class
delimiter - column delimiter string
comment - regular expression defining a comment line in table
quotechar - one-character string to quote fields containing special characters
header_start - line index for the header line not counting comment lines
data_start - line index for the start of data not counting comment lines
data_end - line index for the end of data (can be negative to count from end)
converters - dict of converters
data_Splitter - Splitter class to split data columns
header_Splitter - Splitter class to split header columns
names - list of names corresponding to each data column
include_names - list of names to include in output (default=None selects all names)
exclude_names - list of names to exlude from output (applied after include_names)

Note that the Outputter argument is not passed to astropy.io.ascii.

See the astropy.io.ascii documentation at http://docs.astropy.org/en/latest/io/ascii/index.html for more details.

	
atpy.asciitables.write_ascii(self, filename, **kwargs)

	Read a table from an ASCII file using astropy.io.ascii

Optional Keyword Arguments:

Writer - Writer class (default= Basic)
delimiter - column delimiter string
write_comment - string defining a comment line in table
quotechar - one-character string to quote fields containing special characters
formats - dict of format specifiers or formatting functions
names - list of names corresponding to each data column
include_names - list of names to include in output (default=None selects all names)
exclude_names - list of names to exlude from output (applied after include_names)

See the astropy.io.ascii documentation at http://docs.astropy.org/en/latest/io/ascii/index.html for more details.

 Copyright 2009-2013, Eli Bressert and Thomas Robitaille.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	stable

 	latest

 	0.9.7

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	ATpy 0.9.7 documentation

 	Supported Formats

SQL databases

Note

Structured Query Language (SQL) databases are wildly used in web
infrastructure, and are also used to store large datasets in Science.
Several flavors exist, the most popular of which are SQLite, MySQL, and
PostGreSQL.

SQL databases are supported in ATpy thanks to the sqlite module built-in to Python, the MySQL-python [http://sourceforge.net/projects/mysql-python] module, and the PyGreSQL [http://www.pygresql.org/] module. When reading from databases, the first argument in Table should be the database type (one of sqlite, mysql, and postgres). For SQLite databases, which are stored in a file, reading in a table is easy:

>>> t = atpy.Table('sqlite', 'mydatabase.db')

If more than one table is present in the file, the table name can be specified:

>>> t = atpy.Table('sqlite', 'mydatabase.db', table='observations')

For MySQL databases, standard MySQL parameters can be specified. These include user, passwd, db (the database name), host, and port. For PostGreSQL databases, standard PostGreSQL parameters can be specified. These include user, password, database, and host.

For example, to read a table called velocities from a MySQL database called measurements, with a user monty and password spam, one would use:

>>> t = atpy.Table('mysql', user='monty', passwd='spam',
 db='measurements', table='velocities')

To read in all the tables in a database, simply use the TableSet class, e.g:

>>> t = atpy.TableSet('sqlite', 'mydatabase.db')

or

>>> t = atpy.TableSet('mysql', user='monty', passwd='spam',
 db='measurements')

It is possible to retrieve only a subset of a table, or the result of any standard SQL query, using the query argument. For example, the following will retrieve all entries where the quality variable is positive:

>>> t = atpy.Table('mysql', user='monty', passwd='spam',
 db='measurements', table='velocities',
 query='SELECT * FROM velocities WHERE quality > 0;')

Any valid SQL command should work, including commands used to merge different tables.

Writing tables or table sets to databases is simple, and is done through the write method. As before, database parameters may need to be specified, e.g.:

>>> t.write('sqlite', 'mydatabase.db')

or

>>> t.write('mysql', user='monty', passwd='spam',
 db='measurements')

Note

As for file formats, the verbose argument can be specified to
control whether warning messages are shown when reading (the default is
verbose=True), and the overwrite argument can be used when
writing to overwrite a file (the default is overwrite=False).

Full API for advanced users

Note

The following functions should not be called directly - the arguments should be passed to Table()/Table.read(),
Table.write(), TableSet()/TableSet.read(), and
TableSet.write() respectively.

	
atpy.sqltable.read(self, dbtype, *args, **kwargs)

	Required Arguments:

	dbtype: [‘sqlite’ | ‘mysql’ | ‘postgres’]

	The SQL database type

Optional arguments (only for Table.read() class):

	table: [string]

	The name of the table to read from the database (this is only
required if there are more than one table in the database). This
is not required if the query= argument is specified, except if
using an SQLite database.

	query: [string]

	An arbitrary SQL query to construct a table from. This can be
any valid SQL command provided that the result is a single
table.

The remaining arguments depend on the database type:

	SQLite:

Arguments are passed to sqlite3.connect(). For a full list of
available arguments, see the help page for sqlite3.connect(). The
main arguments are listed below.

Required arguments:

	dbname: [string]

	The name of the database file

	MySQL:

Arguments are passed to MySQLdb.connect(). For a full list of
available arguments, see the documentation for MySQLdb. The main
arguments are listed below.

Optional arguments:

	host: [string]

	The host to connect to (default is localhost)

	user: [string]

	The user to conenct as (default is current user)

	passwd: [string]

	The user password (default is blank)

	db: [string]

	The name of the database to connect to (no default)

	port [integer]

	The port to connect to (default is 3306)

	PostGreSQL:

Arguments are passed to pgdb.connect(). For a full list of
available arguments, see the help page for pgdb.connect(). The
main arguments are listed below.

	host: [string]

	The host to connect to (default is localhost)

	user: [string]

	The user to conenct as (default is current user)

	password: [string]

	The user password (default is blank)

	database: [string]

	The name of the database to connect to (no default)

	
atpy.sqltable.write(self, dbtype, *args, **kwargs)

	Required Arguments:

	dbtype: [‘sqlite’ | ‘mysql’ | ‘postgres’]

	The SQL database type

Optional arguments (only for Table.read() class):

	table: [string]

	The name of the table to read from the database (this is only
required if there are more than one table in the database). This
is not required if the query= argument is specified, except if
using an SQLite database.

	query: [string]

	An arbitrary SQL query to construct a table from. This can be
any valid SQL command provided that the result is a single
table.

The remaining arguments depend on the database type:

	SQLite:

Arguments are passed to sqlite3.connect(). For a full list of
available arguments, see the help page for sqlite3.connect(). The
main arguments are listed below.

Required arguments:

	dbname: [string]

	The name of the database file

	MySQL:

Arguments are passed to MySQLdb.connect(). For a full list of
available arguments, see the documentation for MySQLdb. The main
arguments are listed below.

Optional arguments:

	host: [string]

	The host to connect to (default is localhost)

	user: [string]

	The user to conenct as (default is current user)

	passwd: [string]

	The user password (default is blank)

	db: [string]

	The name of the database to connect to (no default)

	port [integer]

	The port to connect to (default is 3306)

	PostGreSQL:

Arguments are passed to pgdb.connect(). For a full list of
available arguments, see the help page for pgdb.connect(). The
main arguments are listed below.

	host: [string]

	The host to connect to (default is localhost)

	user: [string]

	The user to conenct as (default is current user)

	password: [string]

	The user password (default is blank)

	database: [string]

	The name of the database to connect to (no default)

	
atpy.sqltable.read_set(self, dbtype, *args, **kwargs)

	Required Arguments:

	dbtype: [‘sqlite’ | ‘mysql’ | ‘postgres’]

	The SQL database type

Optional arguments (only for Table.read() class):

	table: [string]

	The name of the table to read from the database (this is only
required if there are more than one table in the database). This
is not required if the query= argument is specified, except if
using an SQLite database.

	query: [string]

	An arbitrary SQL query to construct a table from. This can be
any valid SQL command provided that the result is a single
table.

The remaining arguments depend on the database type:

	SQLite:

Arguments are passed to sqlite3.connect(). For a full list of
available arguments, see the help page for sqlite3.connect(). The
main arguments are listed below.

Required arguments:

	dbname: [string]

	The name of the database file

	MySQL:

Arguments are passed to MySQLdb.connect(). For a full list of
available arguments, see the documentation for MySQLdb. The main
arguments are listed below.

Optional arguments:

	host: [string]

	The host to connect to (default is localhost)

	user: [string]

	The user to conenct as (default is current user)

	passwd: [string]

	The user password (default is blank)

	db: [string]

	The name of the database to connect to (no default)

	port [integer]

	The port to connect to (default is 3306)

	PostGreSQL:

Arguments are passed to pgdb.connect(). For a full list of
available arguments, see the help page for pgdb.connect(). The
main arguments are listed below.

	host: [string]

	The host to connect to (default is localhost)

	user: [string]

	The user to conenct as (default is current user)

	password: [string]

	The user password (default is blank)

	database: [string]

	The name of the database to connect to (no default)

	
atpy.sqltable.write_set(self, dbtype, *args, **kwargs)

	Required Arguments:

	dbtype: [‘sqlite’ | ‘mysql’ | ‘postgres’]

	The SQL database type

Optional arguments (only for Table.read() class):

	table: [string]

	The name of the table to read from the database (this is only
required if there are more than one table in the database). This
is not required if the query= argument is specified, except if
using an SQLite database.

	query: [string]

	An arbitrary SQL query to construct a table from. This can be
any valid SQL command provided that the result is a single
table.

The remaining arguments depend on the database type:

	SQLite:

Arguments are passed to sqlite3.connect(). For a full list of
available arguments, see the help page for sqlite3.connect(). The
main arguments are listed below.

Required arguments:

	dbname: [string]

	The name of the database file

	MySQL:

Arguments are passed to MySQLdb.connect(). For a full list of
available arguments, see the documentation for MySQLdb. The main
arguments are listed below.

Optional arguments:

	host: [string]

	The host to connect to (default is localhost)

	user: [string]

	The user to conenct as (default is current user)

	passwd: [string]

	The user password (default is blank)

	db: [string]

	The name of the database to connect to (no default)

	port [integer]

	The port to connect to (default is 3306)

	PostGreSQL:

Arguments are passed to pgdb.connect(). For a full list of
available arguments, see the help page for pgdb.connect(). The
main arguments are listed below.

	host: [string]

	The host to connect to (default is localhost)

	user: [string]

	The user to conenct as (default is current user)

	password: [string]

	The user password (default is blank)

	database: [string]

	The name of the database to connect to (no default)

 Copyright 2009-2013, Eli Bressert and Thomas Robitaille.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	stable

 	latest

 	0.9.7

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	ATpy 0.9.7 documentation

 	Supported Formats

Online queries

It is possible to query online databases and automatically return the results
as a Table instance. There are several mechanisms for accessing online
catalogs:

Virtual Observatory

An interface to the virtual observatory is provided via the vo [https://trac6.assembla.com/astrolib] module. To list the catalogs
available, use the list_catalogs() method from atpy.vo_conesearch:

>>> from atpy.vo_conesearch import list_catalogs
>>> list_catalogs()
 USNO-A2
 USNO-B1
 USNO NOMAD
 USNO ACT

A specific catalog can then be queried with a conesearch by specifying a
catalog, and the coordinates and radius (in degrees) to search:

>>> t = atpy.Table(catalog='USNO-B1', ra=233.112, dec=23.432, radius=0.3, type='vo_conesearch')

How long this query takes will depend on the speed of your network, the load
on the server being queried, and the number of rows in the result. For
advanced users, it is also possible to query catalogs not listed by
list_catalogs() - for more details, see the Full API for advanced users.

IRSA Query

In addition to supporting Virtual Observatory queries, ATpy supports queries
to the NASA/IPAC Infrared Science Archive (IRSA) [http://irsa.ipac.caltech.edu/]. The interface is similar to that of the VO. To list the catalogs
available, use the list_catalogs() method from atpy.irsa_service:

>>> from atpy.irsa_service import list_catalogs
>>> list_catalogs()
 fp_psc 2MASS All-Sky Point Source Catalog (PSC)
 fp_xsc 2MASS All-Sky Extended Source Catalog (XSC)
 lga_v2 The 2MASS Large Galaxy Atlas
 fp_scan_dat 2MASS All-Sky Survey Scan Info

The first column is the catalog code used in the query. A specific catalog can then be queried by specifying a
query type, a catalog, and additional arguments as required. The different kinds of search are:

	Cone: This is a cone search. Requires objstr, a string containing
either coordinates or an object name (see here [http://irsa.ipac.caltech.edu/search_help.html] for more information),
and radius, with units given by units ('arcsec' by
default). For example:

>>> t = atpy.Table('Cone', 'fp_psc', objstr='m13', \
 radius=100., type='irsa')

	Box: This is a box search. Requires objstr, a string containing
either coordinates or an object name (see here [http://irsa.ipac.caltech.edu/search_help.html] for more
information), and size in arcseconds. For example:

>>> t = atpy.Table('Box', 'fp_psc', objstr='T Tau', \
 size=200., units='deg', type='irsa')

	Polygon: This is a polygon search. Requires polygon, which should be
a list of tuples of (ra, dec) in decimal degrees:

>>> t = atpy.Table('polygon','fp_psc', \
 polygon=[(11.0, 45.0), (12.0, 45.0), (11.5, 46.)], \
 type='irsa')

As for the VO query, how long these queries takes will depend on the speed of
your network, the load on the IRSA server, and the number of rows in the
result.

Full API for advanced users

Note

The following functions should not be called directly - the arguments
should be passed to Table()/Table.read() using either
type=vo_conesearch or type=irsa.

	
atpy.vo_conesearch.read(self, catalog=None, ra=None, dec=None, radius=None, verb=1, pedantic=False, **kwargs)

	Query a VO catalog using the STScI vo module

This docstring has been adapted from the STScI vo conesearch module:

catalog [None | string | VOSCatalog | list]

May be one of the following, in order from easiest to use to most
control:

	None: A database of conesearch catalogs is downloaded from
STScI. The first catalog in the database to successfully return
a result is used.

	catalog name: A name in the database of conesearch catalogs at
STScI is used. For a list of acceptable names, see
vo_conesearch.list_catalogs().

	url: The prefix of a url to a IVOA Cone Search Service. Must end
in either ? or &.

	A VOSCatalog instance: A specific catalog manually downloaded
and selected from the database using the APIs in the
STScI vo.vos_catalog module.

	Any of the above 3 options combined in a list, in which case
they are tried in order.

	pedantic [bool]

	When pedantic is True, raise an error when the returned VOTable
file violates the spec, otherwise issue a warning.

	ra [float]

	A right-ascension in the ICRS coordinate system for the position
of the center of the cone to search, given in decimal degrees.

	dec [float]

	A declination in the ICRS coordinate system for the position of
the center of the cone to search, given in decimal degrees.

	radius [float]

	The radius of the cone to search, given in decimal degrees.

	verb [int]

	Verbosity, 1, 2, or 3, indicating how many columns are to be
returned in the resulting table. Support for this parameter by a
Cone Search service implementation is optional. If the service
supports the parameter, then when the value is 1, the response
should include the bare minimum of columns that the provider
considers useful in describing the returned objects. When the
value is 3, the service should return all of the columns that are
available for describing the objects. A value of 2 is intended for
requesting a medium number of columns between the minimum and
maximum (inclusive) that are considered by the provider to most
typically useful to the user. When the verb parameter is not
provided, the server should respond as if verb = 2. If the verb
parameter is not supported by the service, the service should
ignore the parameter and should always return the same columns for
every request.

Additional keyword arguments may be provided to pass along to the
server. These arguments are specific to the particular catalog being
queried.

	
atpy.irsa_service.read(self, spatial, catalog, objstr=None, radius=None, units='arcsec', size=None, polygon=None)

	Query the NASA/IPAC Infrared Science Archive (IRSA)

Required Arguments:

	spatial [‘Cone’ | ‘Box’ | ‘Polygon’]

	The type of query to execute

	catalog [string]

	One of the catalogs listed by atpy.irsa_service.list_catalogs()

Optional Keyword Arguments:

	objstr [str]

	This string gives the position of the center of the cone or box if
performing a cone or box search. The string can give coordinates
in various coordinate systems, or the name of a source that will
be resolved on the server (see here [http://irsa.ipac.caltech.edu/search_help.html] for more
details). Required if spatial is ‘Cone’ or ‘Box’.

	radius [float]

	The radius for the cone search. Required if spatial is ‘Cone’

	units [‘arcsec’ | ‘arcmin’ | ‘deg’]

	The units for the cone search radius. Defaults to ‘arcsec’.

	size [float]

	The size of the box to search in arcseconds. Required if spatial
is ‘Box’.

	polygon [list of tuples]

	The list of (ra, dec) pairs, in decimal degrees, outlinining the
polygon to search in. Required if spatial is ‘Polygon’

 Copyright 2009-2013, Eli Bressert and Thomas Robitaille.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	stable

 	latest

 	0.9.7

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	ATpy 0.9.7 documentation

Full API for Table class

Table initialization and I/O

	
Table.reset()

	Empty the table

	
Table.read(*args, **kwargs)

	Read in a table from a file/database.

Optional Keyword Arguments (independent of table type):

	verbose: [True | False]

	Whether to print out warnings when reading (default is True)

	type: [string]

	The read method attempts to automatically guess the
file/database format based on the arguments supplied. The type
can be overridden by setting this argument.

	
Table.write(*args, **kwargs)

	Write out a table to a file/database.

Optional Keyword Arguments (independent of table type):

	verbose: [True | False]

	Whether to print out warnings when writing (default is True)

	type: [string]

	The read method attempts to automatically guess the
file/database format based on the arguments supplied. The type
can be overridden by setting this argument.

Meta-data

	
Table.add_comment(comment)

	Add a comment to the table

Required Argument:

	comment: [string]

	The comment to add to the table

	
Table.add_keyword(key, value)

	Add a keyword/value pair to the table

Required Arguments:

	key: [string]

	The name of the keyword

	value: [string | float | integer | bool]

	The value of the keyword

	
Table.describe()

	Prints a description of the table

Column manipulation

	
Table.add_column(name, data, unit='', null='', description='', format=None, dtype=None, column_header=None, before=None, after=None, position=None, mask=None, fill=None)

	Add a column to the table

Required Arguments:

	name: [string]

	The name of the column to add

	data: [numpy array]

	The column data

Optional Keyword Arguments:

	unit: [string]

	The unit of the values in the column

	null: [same type as data]

	The values corresponding to ‘null’, if not NaN

	description: [string]

	A description of the content of the column

	format: [string]

	The format to use for ASCII printing

	dtype: [numpy type]

	Numpy type to convert the data to. This is the equivalent to
the dtype= argument in numpy.array

	column_header: [ColumnHeader]

	The metadata from an existing column to copy over. Metadata
includes the unit, null value, description, format, and dtype.
For example, to create a column ‘b’ with identical metadata to
column ‘a’ in table ‘t’, use:

>>> t.add_column('b', column_header=t.columns[a])

	before: [string]

	Column before which the new column should be inserted

	after: [string]

	Column after which the new column should be inserted

	position: [integer]

	Position at which the new column should be inserted (0 = first
column)

	mask: [numpy array]

	An array of booleans, with the same dimensions as the data,
indicating whether or not to mask values.

	fill: [value]

	If masked arrays are used, this value is used as the fill
value in the numpy masked array.

	
Table.add_empty_column(name, dtype, unit='', null='', description='', format=None, column_header=None, shape=None, before=None, after=None, position=None)

	Add an empty column to the table. This only works if there
are already existing columns in the table.

Required Arguments:

	name: [string]

	The name of the column to add

	dtype: [numpy type]

	Numpy type of the column. This is the equivalent to
the dtype= argument in numpy.array

Optional Keyword Arguments:

	unit: [string]

	The unit of the values in the column

	null: [same type as data]

	The values corresponding to ‘null’, if not NaN

	description: [string]

	A description of the content of the column

	format: [string]

	The format to use for ASCII printing

	column_header: [ColumnHeader]

	The metadata from an existing column to copy over. Metadata
includes the unit, null value, description, format, and dtype.
For example, to create a column ‘b’ with identical metadata to
column ‘a’ in table ‘t’, use:

>>> t.add_column('b', column_header=t.columns[a])

	shape: [tuple]

	Tuple describing the shape of the empty column that is to be
added. If a one element tuple is specified, it is the number
of rows. If a two element tuple is specified, the first is the
number of rows, and the second is the width of the column.

	before: [string]

	Column before which the new column should be inserted

	after: [string]

	Column after which the new column should be inserted

	position: [integer]

	Position at which the new column should be inserted (0 = first
column)

	
Table.remove_columns(remove_names)

	Remove several columns from the table

Required Argument:

	remove_names: [list of strings]

	A list containing the names of the columns to remove

	
Table.keep_columns(keep_names)

	Keep only specific columns in the table (remove the others)

Required Argument:

	keep_names: [list of strings]

	A list containing the names of the columns to keep.
All other columns will be removed.

	
Table.rename_column(old_name, new_name)

	Rename a column from the table

Require Arguments:

	old_name: [string]

	The current name of the column.

	new_name: [string]

	The new name for the column

	
Table.set_primary_key(key)

	Set the name of the table column that should be used as a unique
identifier for the record. This is the same as primary keys in SQL
databases. A primary column cannot contain NULLs and must contain only
unique quantities.

Required Arguments:

	key: [string]

	The column to use as a primary key

Table manipulation and selection

	
Table.sort(keys)

	Sort the table according to one or more keys. This operates
on the existing table (and does not return a new table).

Required arguments:

	keys: [string | list of strings]

	The key(s) to order by

	
Table.row(row_number, python_types=False)

	Returns a single row

Required arguments:

	row_number: [integer]

	The row number (the first row is 0)

Optional Keyword Arguments:

	python_types: [True | False]

	Whether to return the row elements with python (True)
or numpy (False) types.

	
Table.rows(row_ids)

	Select specific rows from the table and return a new table instance

Required Argument:

	row_ids: [list | np.int array]

	A python list or numpy array specifying which rows to select,
and in what order.

Returns:

A new table instance, containing only the rows selected

	
Table.where(mask)

	Select matching rows from the table and return a new table instance

Required Argument:

	mask: [np.bool array]

	A boolean array with the same length as the table.

Returns:

A new table instance, containing only the rows selected

 Copyright 2009-2013, Eli Bressert and Thomas Robitaille.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	stable

 	latest

 	0.9.7

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	ATpy 0.9.7 documentation

Full API for TableSet class

TableSet initialization and I/O

	
TableSet.reset()

	Empty the table set

	
TableSet.read(*args, **kwargs)

	Read in a table set from a file/database.

Optional Keyword Arguments (independent of table type):

	verbose: [True | False]

	Whether to print out warnings when reading (default is True)

	type: [string]

	The read method attempts to automatically guess the
file/database format based on the arguments supplied. The type
can be overridden by setting this argument.

	
TableSet.write(*args, **kwargs)

	Write out a table set to a file/database.

Optional Keyword Arguments (independent of table type):

	verbose: [True | False]

	Whether to print out warnings when writing (default is True)

	type: [string]

	The read method attempts to automatically guess the
file/database format based on the arguments supplied. The type
can be overridden by setting this argument.

Meta-data

	
TableSet.add_comment(comment)

	Add a comment to the table set

Required Argument:

	comment: [string]

	The comment to add to the table

	
TableSet.add_keyword(key, value)

	Add a keyword/value pair to the table set

Required Arguments:

	key: [string]

	The name of the keyword

	value: [string | float | integer | bool]

	The value of the keyword

	
TableSet.describe()

	Describe all the tables in the set

TableSet manipulation and I/O

	
TableSet.append(table)

	Append a table to the table set

Required Arguments:

	table: [a table instance]

	This can be a table of any type, which will be converted
to a table of the same type as the parent set (e.g. adding
a single VOTable to a FITSTableSet will convert the VOTable
to a FITSTable inside the set)

 Copyright 2009-2013, Eli Bressert and Thomas Robitaille.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	stable

 	latest

 	0.9.7

 Navigation

 	
 index

 	
 modules |

 	ATpy 0.9.7 documentation

 Python Module Index

 a

 			

 		
 a	

 	
 	
 atpy	

 Copyright 2009-2013, Eli Bressert and Thomas Robitaille.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	stable

 	latest

 	0.9.7

 Navigation

 	
 index

 	
 modules |

 	ATpy 0.9.7 documentation

Index

 A
 | D
 | K
 | R
 | S
 | W

A

 	

 	add_column() (atpy.Table method)

 	add_comment() (atpy.Table method)

 	

 	(atpy.TableSet method)

 	add_empty_column() (atpy.Table method)

 	

 	add_keyword() (atpy.Table method)

 	

 	(atpy.TableSet method)

 	append() (atpy.TableSet method)

 	atpy (module), [1]

D

 	

 	describe() (atpy.Table method)

 	

 	(atpy.TableSet method)

K

 	

 	keep_columns() (atpy.Table method)

R

 	

 	read() (atpy.Table method)

 	

 	(atpy.TableSet method)

 	(in module atpy.fitstable)

 	(in module atpy.hdf5table)

 	(in module atpy.ipactable)

 	(in module atpy.irsa_service)

 	(in module atpy.sqltable)

 	(in module atpy.vo_conesearch)

 	(in module atpy.votable)

 	read_ascii() (in module atpy.asciitables)

 	read_cds() (in module atpy.asciitables)

 	read_daophot() (in module atpy.asciitables)

 	read_rdb() (in module atpy.asciitables)

 	read_set() (in module atpy.fitstable)

 	

 	(in module atpy.hdf5table)

 	(in module atpy.sqltable)

 	(in module atpy.votable)

 	

 	remove_columns() (atpy.Table method)

 	rename_column() (atpy.Table method)

 	reset() (atpy.Table method)

 	

 	(atpy.TableSet method)

 	row() (atpy.Table method)

 	rows() (atpy.Table method)

S

 	

 	set_primary_key() (atpy.Table method)

 	

 	sort() (atpy.Table method)

W

 	

 	where() (atpy.Table method)

 	write() (atpy.Table method)

 	

 	(atpy.TableSet method)

 	(in module atpy.fitstable)

 	(in module atpy.hdf5table)

 	(in module atpy.ipactable)

 	(in module atpy.sqltable)

 	(in module atpy.votable)

 	

 	write_ascii() (in module atpy.asciitables)

 	write_set() (in module atpy.fitstable)

 	

 	(in module atpy.hdf5table)

 	(in module atpy.sqltable)

 	(in module atpy.votable)

 Copyright 2009-2013, Eli Bressert and Thomas Robitaille.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	stable

 	latest

 	0.9.7

 _static/minus.png

_static/comment-bright.png

search.html

 Navigation

 		
 index

 		
 modules |

 		ATpy 0.9.7 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2009-2013, Eli Bressert and Thomas Robitaille.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 		stable

 		latest

 		0.9.7

_static/comment-close.png

_static/up-pressed.png

_static/up.png

_static/plus.png

_static/down.png

_static/comment.png

_static/ajax-loader.gif

_static/atpy_logo.png

_static/file.png

introduction.html

 Navigation

 		
 index

 		
 modules |

 		ATpy 0.9.7 documentation »

Introduction

ATpy is a high-level Python package providing a way to manipulate tables of
astronomical data in a uniform way. The two main features of ATpy are:

		It provides a Table class that contains data stored in a NumPy structured
array, along with meta-data to describe the columns, and methods to
manipulate the table (e.g. adding/removing/renaming columns, selecting rows,
changing values).

		It provides built-in support for reading and writing to several common
file/database formats, including FITS, VO, and IPAC tables, and SQLite,
MySQL and PostgreSQL databases, with a very simple API.

In addition, ATpy provides a TableSet class that can be used to contain multiple tables, and supports reading and writing to file/database formats that support this (FITS, VO, and SQL databases).

Finally, ATpy provides support for user-written read/write functions for file/database formats not supported by default. We encourage users to send us custom read/write functions to read commonly used formats, and would be happy to integrate them into the main distribution.

 © Copyright 2009-2013, Eli Bressert and Thomas Robitaille.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 		stable

 		latest

 		0.9.7

contents.html

 Navigation

 		
 index

 		
 modules |

 		ATpy 0.9.7 documentation »

Table of Contents

		Introduction

		Obtaining and Installing
		Requirements

		Stable version

		Developer version

		Constructing a table
		Creating a table

		Populating the table

		Adding meta-data

		Accessing Table Data
		Accessing the data

		Accessing the metadata

		Accessing table rows

		Global Table properties

		Modifying tables
		Manipulating table columns

		Sorting tables

		Combining tables

		Table Sets
		Initialization

		Manually adding a table to a set

		Reading in tables from a file or database

		Accessing a single table

		Adding meta-data

		Masking and null values
		Null values

		Masking

		Custom reading/writing

		Supported Formats
		FITS tables

		VO tables

		HDF5 tables

		IPAC tables

		ASCII tables

		SQL databases

		Online queries

		Full API for Table class
		Table initialization and I/O

		Meta-data

		Column manipulation

		Table manipulation and selection

		Full API for TableSet class
		TableSet initialization and I/O

		Meta-data

		TableSet manipulation and I/O

 © Copyright 2009-2013, Eli Bressert and Thomas Robitaille.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 		stable

 		latest

 		0.9.7

migration.html

 Navigation

 		
 index

 		
 modules |

 		ATpy 0.9.7 documentation »

Guide for Migrating to Astropy

Note

If you encounter any other issues not described here when migrating to
Astropy, please let us know [https://github.com/atpy/atpy/issues]
and we will update this guide accordingly.

Much of the functionality from ATpy has been incorporated into the Astropy [http://www.astropy.org] as the astropy.table [http://docs.astropy.org/en/stable/table] sub-package. The Astropy Table.
class can be imported with:

>>> from astropy.table import Table

In the process of including the code in Astropy, the API has been changed in a
backward-incompatible way, and the present document aims to describe the main
changes.

Note that the Astropy Table class is more powerful than the ATpy
equivalent in many respects, and we do not describe all the features here,
only functionality of ATpy that has changed in Astropy. For a full overview of
the Astropy Table class, see astropy.table [http://docs.astropy.org/en/stable/table].

Adding columns

In ATpy, columns are added with:

>>> from atpy import Table
>>> t = Table()
>>> t.add_column('a', [1, 2, 3])

In the Astropy 0.2.x Table class, the equivalent is:

>>> from astropy.table import Table, Column
>>> t = Table()
>>> t.add_column(Column(data=[1, 2, 3], name='a'))

This is a little more verbose, but from Astropy 0.3 onwards, this can be done
more simply with:

>>> from astropy.table import Table, Column
>>> t = Table()
>>> t['a'] = [1, 2, 3]

This is already implemented in the latest developer version of Astropy, and
will be the recommended way of adding columns.

Reading/writing

While it was possible to read a table directly into the Table class upon
initialization in ATpy:

>>> from atpy import Table
>>> t = Table('test.fits')

Astropy now requires reading to be done by a class method:

>>> from astropy.table import Table
>>> t = Table.read('test.fits')

To explicitly specify the format of the file in Astropy use the
format keyword; it takes the same values that the type keyword did in ATpy:

>>> from astropy.table import Table
>>> t = Table.read('test.txt', format='ascii')

Writing should be similar between ATpy and Astropy:

>>> t.write('test.fits')

As of Astropy 0.2, Astropy can read/write the same ASCII formats as ATpy, as
well as VO tables and HDF5. As of Astropy 0.3 (and in the current developer
version of Astropy), FITS reading/writing is also implemented. This means that
as of Astropy 0.3, the only features ATpy includes that are not supported by
Astropy directly are the SQL input/output and the online (VO and IRSA)
querying. However, the VO and IRSA querying will be possible with the new
astroquery [http://astroquery.readthedocs.org] package which is currently
under development.

Access table data

Accessing columns

ATpy allowed access to columns by either using the column name as a key or, if the key is a valid python variable name, as an attribute of the table:

>>> from atpy import Table
>>> t = Table()
>>> t.add_column('a', [1, 2, 3])
>>> t['a']
array([1, 2, 3])
>>> t.a
array([1, 2, 3])

Astropy permits column access by only key:

>>> from astropy.table import Table, Column
>>> t = Table()
>>> t.add_column(Column(data=[1, 2, 3], name='a'))
>>> t['a']
<Column name='a' units=None format=None description=None>
array([1, 2, 3])
>>> t.a
Traceback (most recent call last):
 ...
AttributeError: 'Table' object has no attribute 'a'

Accessing rows

Rows are accessed in Astropy as they were in ATpy–one can specify a single index, a slice, or an array of indices.

The where method in ATpy is replaced by using a boolean index array:

>>> # In ATpy:
>>> t_new = t_atpy.where((t['id'] > 10) & (t['ra'] < 45.4) & (t['flag'] == 'ok'))

>>> # In Astropy:
>>> t_new = t_astropy[(t['id'] > 10) & (t['ra'] < 45.4) & (t['flag'] == 'ok')]

Note that astropy returns a new Table just as the where method did.

Table Sets

Table sets are not implemented in Astropy at this time, but it is possible to
simply loop over the tables in a file and construct a list or dictionary of
them.

 © Copyright 2009-2013, Eli Bressert and Thomas Robitaille.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 		stable

 		latest

 		0.9.7

_static/down-pressed.png

